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Motivation
• Spacecraft designers can 

benefit from environmental 
specifications which are as 
realistic as possible.

• One specific objective of the 
Space Radiation Climatology 
GEM Focus Group will be to run 
data-assimilative models of 
magnetospheric dynamics over 
solar-cycle time-scales, 
providing this best-guess 
specification.  

• This data / model comparison 
will lead to running the 
Selesnick et. al., 2007 inner belt 
model in a data-assimilative 
fashion.  

This paper presents preliminary comparisons of a physics- 
based inner-belt proton model (Selesnick et. al., 2007) with 

trapped proton observations at LEO (SAMPEX/PET).

Mazur, 2008
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Inner Belt Proton Model (Selesnick et. al., 2007)

• The Selesnick et al., 2007 
model computes the proton 
intensity of trapped protons 
as a function of time and the 
three adiabatic invariants (M, 
K, and L) from ~10 MeV to ~4 
GeV and from 1.1 < L < 2.4. 

• They found that the long-term 
secular change of the 
geomagnetic field has a 
significant effect on the long- 
lived inner belt population.

– Factor of 10 in the 
intensities.  

Sources Losses

•CRAND (Cosmic 
Ray Albedo 
Neutron Decay)

•Solar Protons

•Radial Diffusion

•Ionization 
energy loss

•Free electron 
energy loss

•Adiabatic energy 
change

•Radial diffusion
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Inner Belt Model Results

• 3 ½ solar cycles of inner 
belt proton fluxes at a 
constant energy at
– L=2 (top panel)
– L=1.5 (2nd panel)
– L=1.2 (3rd panel)

• The outer portion of the 
inner belt (top panel) is 
dominated by external 
dynamics (SEPs)

• The inner portion of the 
inner belt (3rd panel) is 
dominated by the CRAND 
process, varying 
inversely with the solar 
cycle.  
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SAMPEX/PET observations
Halloween Storms, 2003

•Above plot shows the 1-month 
average flux as a function of L 
(IGRF) and time throughout the 
SAMPEX mission

•Extract timeseries at 3 L-shells 
(2.0, 1.5, 1.2), plotted at right.  

•L=1.2 fluxes strongly anti- 
correlated with the solar 
cycle

•L=2.0 fluxes dominated by 
impulsive solar particle 
events, such as the 
Halloween, 2003 storms.  

ORR 
Pointing 

mode

SPIN 
Pointing 

mode

Qualitative agreement with 
Selesnick et al., 2007 model
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Making a valid data / model comparison

• Although the “first-order” 
behavior of the observations 
and simulation are similar, we 
don’t know which K’s to 
compare our SAMPEX 
timeseries to.  

– PET has a fairly wide field-of- 
view (~60°), so many 
different pitch angles (and 
their associated K’s) have 
access to the detector.  

SAMPEX data 
superimposed

We need a more careful 
approach when comparing 

observations and the model
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Simulating the PET response within the proton model

• The PET instrument consists of 
8 silicon detectors arranged in 
a stack.  

• Coincidence logic and pulse- 
height analysis enables 
determination of 15 energy 
channels.

• Acceptance angle decreases 
with energy channel

– 29° FOV for a proton 
triggering only P1 and P2 
(red lines)

– 14° FOV for a proton 
triggering all detectors.  
(black lines)

• Only select times when the PET 
telescope axis is within 10° of 
perpendicular to the local field 
line.  

29°14°
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PET Response

29°14°

Starting from the detector geometry, derive detector 
response as a function of angle from telescope axis

Compute shadow area 
as a function of angle 
from telescope axis…

And energy, to get a 
response function, R(E, θt ).
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Simulate a “virtual PET” inside the model

• For αmin < α

 

< αmax , calculate model coordinates 
accessible to the detectors.

αmin
αmax

• Where p is momentum, Bm is the mirror 
magnetic field, sm and s’m are the mirror point 
locations, μE

2000 is the Earth’s dipole moment in 
2000, and Φ

 

is the magnetic flux inside a drift 
shell.

• Interpolate into model to determine the model 
intensity at each observed M, K, and L.  

[ ]

Φ
=

−=

=

∫

E

E

s

s
m

m

R
L

dssBBK

mB
pM

m

m

2000

2/1

2

2

)(

2
'

πμ



10

Calculate detector count rates

• We reproduce what the detector would 
have seen in the Selesnick et al., 2007 
model by:

– Specifying the energy and angular 
response of the detector, R(E,θt ).

– Determining which M, K, and L 
values have access to the detector 
for every inner belt data point.

– Interpolating into the model at those 
M, K, and L values, j(E,α).

– Integrating from the lower (E1 ) to the 
upper energy bound (E2 ) of each 
detector channel, from the telescope 
axis to the upper end of the 
acceptance cone, and around the 
telescope axis.  
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Preliminary Results
• One month of L-binned data/model at the 

SAMPEX location.
• Count rate offset is not correct – due to 

averaging in the L-binning.  
• The model count rates seem “stretched” in L

– Observed ~20 MeV fluxes peak at L~1.6
– Simulated ~20 MeV fluxes peak at L~2.1.  

• Revisit Selesnick et al., 2007, Figure 17, to 
estimate how different in fluxes the model 
should be from observations.

j @ 20 MeV j @ 100 MeV

L-shell Selesnick AP8 Selesnick AP8

1.2 ~10 ~3 ~10 ~3

1.5 ~1000 ~600 ~100 ~10

1.8 ~3000 ~600 ~100 ~3

10x difference 
common, 100x not
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A Simpler Experiment

• Only looking at one day, June 4th, 
1995.

• Only looking at the M, K, and L of a 
particle going down the PET 
telescope axis (i.e. not using the  
angular response function)

• Just using the closest model M, K, 
and L grid point to that observed, 
i.e. no interpolation into the model.  

• No integrating over response 
functions.

• Just comparing the fluxes given by 
the PET dataset with the fluxes 
given by the Selesnick model, in 
the closest model M, K, and L bin 
to the observed M, K, and L.   

• Figure to right plots the model and 
data fluxes vs time (top), vs L-shell 
(middle), and vs. each other 
(bottom).  

• Note large discrepancies in each 
diagnostic.  
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Data / Model Spectra Comparison

• By limiting our comparison to only times when PET is looking within 
certain ranges of L and K, we find that the model spectra are closer to the 
“ensemble” observational spectra.

• This result should improve with interpolation into the model, not just 
picking the fluxes at the closest model grid points.  

• L-binning (averaging) the data as performed on slide 11 artificially 
increases the data / model discrepancy, because the observations have 
more “zero-count” measurements than the model-sampling.  
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Summary

• We perform a first-cut data / model comparison between the 
Selesnick et al., 2007 theoretical model of the inner belt proton 
fluxes and SAMPEX/PET observations.  

• Doing the comparison correctly involves calculation of 
magnetic coordinates and integration of the model over the 
PET response functions.  

– Hard.  

• Preliminary comparison show that the Selesnick et al., 2007 
model is at least in the ballpark (within 10x) of LEO 
observations, but sparse and highly variable observations 
complicate the analysis.  
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Future Work

• Revisit comparison of the count rates, interpolating within 
model and integrating the response functions.  

• Include additional observations to test the model in various 
orbital regimes (HEO, MEO, elliptical LEO).

• Augment the Selesnick et al., 2007 model with a data- 
assimilation capability, and drive the model with these 
observations for a climatological interval.  


	Inner Radiation Belt Data / Model Comparisons�
	Motivation
	Inner Belt Proton Model (Selesnick et. al., 2007)
	Inner Belt Model Results
	SAMPEX/PET observations
	Making a valid data / model comparison
	Simulating the PET response within the proton model
	PET Response
	Simulate a “virtual PET” inside the model
	Calculate detector count rates
	Preliminary Results
	A Simpler Experiment
	Data / Model Spectra Comparison
	Summary
	Future Work

