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Introduction

• Characterizing electron energy spectra is important for analyses such 
as spectral inversion of observations, cross-calibration between 
instruments

• Spectral variability is an aspect of radiation belt dynamics

• The energy spectra of radiation belt electrons take a variety of 
shapes—exponential, power law, bimodal, “bump-on-tail”

• Much variation with time and location

• Sharp contrast with radiation belt protons

exponential power law bump-on-tail
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Observations

• CRRES:  

• Operational July 1990-Oct 1991, orbit 
323 x 33790 km, 18?incl.

• Instruments used:

• MEA:  magnetic energy analyzer, 17 
differential channels, 153 keV-1.58 MeV

• HEEF:  solid state particle telescope, 
11 differential channels, 650 keV-8 MeV

• Total of 495,000 observations from L=2.5 to 
L=7-8.8 (one minute averages)

• All available observations were analyzed 
with two independent methods:  data 
clustering and curve fitting

• MEA and HEEF both provide pitch-
angle resolved data, but omni-
directional averages were used in this 
study



5
GEM Summer Workshop, Snowmass, CO, 21-25 June 2010

Data Clustering

• K-Means Data Clustering
– Non-parametric method of grouping spectra based on distance metric
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– Issues:  Number of clusters, normalization, missing data, sub-
optimal clustering

• Missing data—restrict to energy channels/measurements with 
complete data

• Number of clusters, normalization, & sub-optimal clustering –
Use residuals to recluster exhaustively: 

http://www.data-compression.com/vq.html

* Start with random cluster vectors (“centers”)

* Assign each 
measurement to nearest 
cluster center

* Recompute centers as 
average of member 
measurement vectors; 
iterate
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Clustering method

• For clustering, observations were binned in 0.5-L bins 
(except one bin for L=7-9)

– Total:  485,771 observations (L>2.5)

• K-means clustering was applied to MEA spectra (log 
values) for each L-bin separately

– MEA data nearly complete

– Result:  1532 subclusters (typically ~100 per L-bin)

• For each subcluster, the average MEA-HEEF spectra 
was visually classified into superclusters based on 
shape

– Hand-picking was done in order to sort on shape 
without bias from magnitude

– Result:  16 superclusters

• These 16 superclusters may be classified as 
exponential (2), power law (1), and everything else (13)

– “Everything else” includes cases where cluster 
slope is not constant or monotonically 
decreasing over MEA range (<1.6 MeV)

– At the right these are subdivided into bump-on-
tail = BOT (7), which have local minima, and  
other unusual (6)
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Curve fitting method

• Plot shows the average results for curve fit 
groups

– Solid lines = average of fit parameters

– Markers = log average of MEA (*) and 
HEEF (o) measurements for group 
members

– HEEF results are shown only where 
data exists for at least 1/3 of group 
members

• Each MEA-HEEF spectrum was fit with three 
curves 

– Exponential      J = J0 e-E/Eo

– Power law         J = b E-n

– 3-segment broken power law (BPL)

• Sum of squared errors (SSEs) compared for all 
three fits:

– If SSEEXP or SSEPL < 3 * SSEBPL, classify as 
exponential or power law (whichever is better)

– This addresses the bias from more fit parameters 
with BPL (6 vs. 2) 

• Remaining spectra are BPL—these are divided 
into classes based on fit parameters:

– Local minima   à bump-on-tail (BOT)

– Everything else à other (OTH)

– Two subclasses of each are shown at right

• Issues for both methods:

– HEEF data availability is limited, giving bias toward 
observations with higher fluxes

– Noise floor in both instruments may influence shape
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Comparison of the two methods

• Results are two independent methods classifying 
electron energy spectra

• Comparison of 466,472 spectra classified by both 
methods (4 classes):

– 64.4% same class

– 20.0% curve fit as PL but not by clustering

– 7.0% different BOT/other breakdown

– 8.6% other differences

– Differences are often linked to whether or not HEEF data 
is used

• Similar distribution in L value

– Bump-on-tail at L<3.5-4

– Exponential at L=4-6.5

– Transition to power law and other forms at higher L

n EXP PL BOT OTH

clustering 467317 64.3% 10.5% 9.4% 15.8%

curve fitting 494605 49.2% 28.8% 11.2% 10.8%

clustering

curve fitting
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Spectral classes—L and t

• Both clustering and curve fitting results 
show similar dynamics in the 
distribution of spectral types over L and 
time

– black line = O’Brien-Moldwin model 
plasmapause

• Exponential spectra most common in 
outer belt

• Power law spectra most common at 
outskirts of outer belt

• Bump-on-tail most common in slot 
region

• Frequency of other shapes at L<2.5 
partly reflects the issue of proton 
contamination in MEA

• Transition between BOT and exponential 
correlates with plasmapause location

curve fitting

clustering
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Spectral dependence on MLAT

• The location of the transition from exponential 
to power law distributions at high L values may 
be an artifact of CRRES sampling

– CRRES only sampled L>~6.5 for MLAT>15°

• Exponential distribution extends to larger L at 
lower MLAT

– Relates to pitch-angle dependence of spectral 
form, which we have not examined yet

– Similar MLAT-dependence not observed at low L 
values

|MLAT|<15?

|MLAT|>15?
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Spectral dependence on L

• Spectral distribution relative to the plasmapause location shows a sharper 
low-L cutoff for exponential shapes (than distribution vs. L)

– Plasmapause location from O’Brien-Moldwin model

clustering

curve fitting

exponential

power law

bump-on-tail

other
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Spectral classes and the plasmapause

• Division between BOT and exponential is more strongly linked to delayed 
plasmapause location

– Good fit with 5-day minimum plasmapause location

– Power law and other shapes peak at minimum plasmapause à transitional spectra

exponential
power law
bump-on-tail
other
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Spectral classes—bump on tail

• BOT distributions are observed to develop 
in the slot region following storms

– Plots show development of BOT at L=3.2 
following two storms (from red to blue, 
curves at one-day intervals)

• Characteristic BOT minimum at ~600 keV, 
maximum at ~1.5 MeV

– Possible second minimum at ~350 keV

– The crossover from MEA to HEEF makes it 
hard to precisely define the maximum 
location

– However, similar max/min locations were 
noted in Ogo 5 data by West et al. (1981, 
JGR, 86:2111)

• Development of BOT results from energy-
dependent losses due to wave-particle 
interactions with whistler hiss within the 
plasmasphere (Imhof et al., 1983, JGR 88:8103; 
Meredith et al., 2007, JGR 112:A08214.
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Conclusions

• Electron energy spectral types are a function of location and are dynamic over time

– Exponential in the main outer belt, power law at higher L values, and BOT in the slot region

– Transition from exponential to power law spectra takes place at higher L values for lower MLAT

• The boundary between BOT and exponential spectra strongly correlates with plasmapause 
location, reflecting the role of plasmaspheric hiss in BOT development

– Good match to a 5-day minimum of the O’Brien-Moldwin plasmapause location

– Modeling slot region BOT with a broken power law generally yields a minima at 350-600 keV and a 
maxima at 1.5-2 MeV

– Such BOT is observed to develop following storms, the result of energy-dependent losses to wave-
particle interactions with plasmaspheric hiss

• A large fraction of cases (~60-90% at L=4-8) are well represented by simple exponential or 
power-law curves, but…

• The other cases are not

– The nature of the BOT spectral shape complicates curve-fitting, spectral inversion, etc.

– Various bi-modal distributions have been successfully used in the literature at some locations (e.g. 
geosynchronous)—this is not feasible for inversion of data with limited numbers of channels, though

• Topics/issues for future work:  

– examining pitch angle dependence - revisit after further cross-calibration of HEEF, MEA

– fitting other types of curves - using principle components analysis 


