ONERA update on space climatology

Ja

V. Maget, S. Bourdarie, A. Sicard, D. Lazaro, D. Boscher

return on innovation

Context Space climatology based on various families of models (1/2)

Physical models

 \rightarrow electron and proton models : common processes and different ones

THE FRENCH AEROSPACE LAB

Context Space climatology based on various families of models (2/2)

Empirical models

→IGE 2006 @GEO [Sicard-Piet et al., 2008]

- \rightarrow MEO models based on GPS data only (MEO v1 and MEO v2)
- \rightarrow BUT none for the inner belt

Data assimilation

 \rightarrow 3D-Salammbô electron and proton code plugged with direct insertion \rightarrow solar cycle reanalysis

 \rightarrow 3D-Salammbô electron plugged with EnKF

- \rightarrow Modeling uncertainties, especially below L=4 (since no data to compare with)
- → Data uncertainties too

Improving physical models

Models uncertainties

THE FRENCH AEROSPACE LAB

Improving physical models Waves-particles interactions models and database (1/2)

WAPI code

- \rightarrow based on the quasi-linear theory and calculate diffusion coefficients ($D_{\alpha\alpha}$, $D_{\alpha\beta}$ and $D_{\beta\beta}$)
- → comparison with other models (PADIE, Abel and Thorne, Summers)
- → comparison for several kind of waves (chorus, Hiss, EMIC, Lightning whistlers, VLF)
- → comparison for different propagation angle (aligned or non-aligned waves)
- → Recently used for Jupiter

Improving physical models Waves-particles interactions models and database (2/2)

Wave data base structure (angelica.sicard@onera.fr)

→ put together waves data from different s/c in the same frame for a brand board of frequencies : frequencies from 8Hz to 810 kHz

L* values from 1 to 8

All MLT, all latitudes and 6 classes of Kp

 \rightarrow CDF files (ISTP compliant) containing :

fce, Ndens

Bwave_frequency, Bwave_power, Bwave_quality_flag, Bwave_crosscal

 \rightarrow Started this year on french space agency funding with data from DE1, POLAR, CLUSTER 1

HE FRENCH AEROSPACE LA

Kp < 2 2545.6 Hz < f < 2856.5 Hz No Background DE1

Improving physical models

Geomagnetic shielding (1/2)

To better understand its dynamical behavior

 \rightarrow In the context of the radiation belts = trapping boundary for highly energetic protons (> 10MeV)

 \rightarrow In the context of SEP = access to the inner magnetosphere

SEP event and trapping boundary

« untrapping » event

Comparison with T. Cayton (LANL) multi-point measurements using GPS-CXD constellation

Improving physical models

Geomagnetic shielding (2/2)

Transmission function = percentage of arrival directions from which a particle of a given energy may have access

models at the magnetic equator for Lm=4

Transmitted spectra for 2 types of SEP at Lm=4

Improving data quality

Data processing : JASON 2

ICARE-NG detector (daniel.boscher@onera.fr)

 \rightarrow altitude = 1336km, inclination = 66°

- ightarrow data available the next day
- \rightarrow electrons from 0.8 to > 3 MeV
- \rightarrow protons from 20 to > 300 MeV
- ightarrow will fly on JASON 3

Improving data quality

Outer electron belt specification model (1/2)

Specifications [Bourdarie et al., 2009]

\rightarrow spatial coverage :

1. <L*<8 All latitudes (equatorial pitch angles) Symetric in longitude

 \rightarrow energy coverage

50 keV< Ek<10 MeV

ightarrow magnetic field models

IGRF1998 plus Olson-Pfitzer quiet

 \rightarrow solar cycle dependent

ONERA

THE FRENCH AEROSPACE LAS

 $L^{*}=4.5$

Electron flux at magnetic equator versus years of solar cycle Year=0 is solar minimum

L*=6.

Conclusions

Large bunch of empirical/semi-empirical models :

- → @GEO : IGE
- \rightarrow @MEO : MEO model for Galileo constellation
- →@outer belt e-: reanalysis based model

To Do !

- → Plug parts of modelling to Salammbô
- \rightarrow Improve EnKF data assimiation scheme

 Engineering product : OMERE <u>www.trad.fr</u>
Scientific product : included into

IRBEM library